Le mardi 24 juin.

10 h 11h Leep I

11h 15 12h15 Leep II

12h15 14h repas

14h 15h30 A. Merkurjev I

15h45 17h15 Morel I

Le mercredi 25 juin.

10h 11h Morel II

11h15 12h15 Morel III

12h15 14h repas

14h- 15h30 A. Merkurjev II

15h45 17h15 Leep III

Le jeudi 26 juin.

10h 11h A. Merkurjev III

11h15 12h15 A. Merkurjev IV

12h15 14h repas

14h 15h30 F. Morel IV

15h45 17h15 D. Leep IV

 

 

Le vendredi 27 juin.

 

9h – 10h            Stefan Gille : "The Koszul complex and Witt groups"

 

10h15 – 11h15 A. Laghribi : "Sur les formes quadratiques a deploiement maximal en   

                                                 caracteristique 2".

 

11h30 – 12h30  TBA

 

12h30 – 14h      repas

 

14h – 15h          T. De Medts : "Quadratic forms of type E_6, E_7 and E_8"

 

15h15 – 16h15    G. Berhuy :  “Essential dimension of cubics”.

 

 

Steenrod operations in algebraic geometry (A. Merkurjev)


 

1. Equivariant Chow groups

   a) Refined Gysin homomorphisms

   b) Excess formula

   c) Equivariant Chow groups of a cyclic group

2. Reduced power operations

   a) Operations of homological and cohomological type

   b) Functorial properties

   c) Adem relations

3. Steenrod algebra

   a) Definition of the modulo p Steenrod algebra

   b) Presentation by generators and relations

4. Degree formulas

   a) Formulas arising from Steenrod operations

   b) Applications

  By analogy with topology, V.Voevodsky defined
  the Steenrod operations in motivic cohomology.
  He used these operations in his proof of the
  Milnor Conjecture. Later P.Brosnan gave an
  elementary construction of the Steenrod
  operations in the Chow theory, the special
  case of motivic cohomology.
  I am going to give an exposition of the Brosnan's
  work. It includes review of the equivariant
  Chow groups theory (due to Edidin and Graham),
  definition of the reduced power operations,
  description of the Steenrod algebra structure.
  The Steenrod operations will be applied to prove
  various degree formulas.
 
 

Applications of exponential sums to systems ofquadratic forms defined over p-adic fields

(D.Leep)


 

I plan to talk about the method of exponential sums to study systems of

homogeneous forms defined over Q_p, the field of p-adic

numbers.  Special emphasis will be given to systems of quadratic forms. 

Suppose K is a finitely generated function field of transcendence degree

n defined over Q_p.  One motivation for this work is the

attempt to compute the u-invariant of K, or at least to show that u(K)

is finite.   It is known that u(K) \geq 2^{n+2} and that equality

holds when n = 0.   More recently, Parimala and Suresh showed that when

n = 1 and p is odd, then u(K) \leq 10.

One approach for computing the u-invariant of a function field defined

over an arbitrary field k is through the study of systems of quadratic

forms defined over k.   A field k is a quadratic C_i-field if every

system of r quadratic forms defined over k in more than r\cdot 2^i

variables has a common nontrivial zero defined over k.  The standard

methods of the Tsen-Lang theory show that if K is a function field of

transcendence degree n defined over k, and if k is a quadratic

C_i-field, then u(K) \leq 2^{i+n}.  Thus, if Q_p is a

quadratic C_2-field, and K is a finitely generated function field of

transcendence degree n defined over Q_p, then it would follow

that u(K) = 2^{n+2}.

It is not known whether Q_p is a quadratic C_2-field.  Some

have conjectured, or at least speculated, that this should be the case at

least when p is odd.  Systems of r quadratic forms defined over

Q_p have been studied in detail when r =1,2,3, with only

partial results known in the case r =3.   The famous Ax-Kochen theorem 

applied to systems of quadratic forms defined over Q_p states

the following.  For a given positive integer r , there exists an integer

N (that depends on r) such that if p > N, then every system of r

quadratic forms defined over Q_p in more than 4r variables has

a nontrivial common zero defined over Q_p.  There is no

(reasonable) bound known for N.  Since N might increase quickly as r

increases, the Ax-Kochen theorem does not help with our problem.

My lectures will develop the method of exponential sums to study systems

of quadratic forms defined over Q_p.

Other related topics might be covered if time permits.


 
 

K-theorie de Milnor-Witt, puissances de l'ideal fondamental et Sq^2 (F.Morel)
 
 

On se propose de donner quelques idees d'une démonstration de la conjecture de

Milnor sur le gradué de l'anneau de Witt qui repose sur la suite spectrale d'Adams

en cohomologie motivique modulo 2 et les résultats de Voevodsky. On s'attachera surtout

a expliciter le role fondamental joué par l'opération de Steenrod Sq^2 , qui fournit

entre autre des extensions fonctorielles non triviales de la K-théorie de Milnor

par les puissances de l'idéal fondamental, appelées K-théorie de Milnor-Witt.